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A Combinatorial Question

» The boolean hypercube Q"
has vertex set {0,1}".

» Two vertices are adjacent iff
they differ in exactly one
coordinate.




A Combinatorial Question

» The boolean hypercube Q"
has vertex set {0,1}".

» Two vertices are adjacent iff
they differ in exactly one
coordinate.

» The 22 red points in Q3
form an independent set.
» In Q", we can select 271

points that form an
independent set.

Q3 » We are interested in the max
degree of the graph induced
by 271 + 1 selected points.



271 4 1 points of @3

» The red vertices give an induced path on 5 vertices.



271 4 1 points of @3

» The red vertices give an induced path on 5 vertices.
» We can even form an induced cycle on 6 vertices.

» In any combination of 5 vertices, there exists a vertex of
degree > 2.



271 + 1 points of Q*

» The nine red vertices give an induced graph with maximum
degree 2.

» In any combination of 9 vertices, there exists a vertex of
degree > 2.
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» The nine red vertices give an induced graph with maximum
degree 2.

» In any combination of 9 vertices, there exists a vertex of
degree > 2.



Question

What is the smallest possible value of the maximum degree of H,
where H is an induced subgraph of Q", with |V/(H)| =2""1+17?

In other words

We want to determine the following:

min max degyv.
{H:|V(H)|=2"—1+1} {veV(H)}
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Question

What is max degyv? *
(V)2 1) (VU () &)

Theorem (Chung, Fiiredi, Graham, Seymour 1988)

» Every (2”71 + 1)-vertex induced subgraph of Q" has maximum
degree at least (1/2 — o(1)) log n. Ans of (x) = Q(log n).

» Q" has a (2" 4 1)-vertex induced subgraph of maximum

degree [v/n]. Ans of (x) < /n.
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What is max degyv? *
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Theorem (Chung, Fiiredi, Graham, Seymour 1988)

» Every (2771 + 1)-vertex induced subgraph of Q" has maximum

degree at least (1/2 — o(1)) log n. Ans of (x) = Q(log n).
» Q" has a (2"~ + 1)-vertex induced subgraph of maximum
degree [\/n]. Ans of (x) < /n.

Upper Bound: Let [n] = FLUFRU...UF /, with each |F| = /n.
Let X be defined as the following set of points of {0,1}".

{even sets that contain some F;}U{odd sets that don’t contain any F;}.
It can be verified that |X| = 2" + 1 while A(X) = A(XC) = /n.



Question

What is max degyv? *
(V)2 1) (VU () &)

Theorem (Chung, Fiiredi, Graham, Seymour 1988)

» Every (2”71 + 1)-vertex induced subgraph of Q" has maximum

degree at least (1/2 — o(1)) log n. Ans of (x) = Q(log n).
» Q" has a (2" 4 1)-vertex induced subgraph of maximum
degree [v/n]. Ans of (x) < /n.

Theorem (Huang 2019)

Every (271 + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least /n. Ans of (x) = /n.



Proof of Huang's Result

Theorem (Huang 2019)

Every (271 + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least 1/n.



Proof of Huang's Result

Theorem (Huang 2019)

Every (2"~! + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least 1/n.

Lemma

Let G be a graph. Let A\; be the largest eigenvalue of A, the
adjacency matrix of G. Then

A1 < A(G).

Proof: Let v be an eigenvector corresponding to \;. Let v; be the
entry of v with the largest absolute value. Then

Mavil = [(A)il = > vil < A(G) - Jvil.

ji



Elgenvalue Interlacing

Cauchy'’s Interlacing Theorem

Let A be a symmetric matrix of size n, and B is a principal
submatrix of A of size m < n. Suppose the eigenvalues of A are

AL> A > 0> A,
and the eigenvalues of B are
M1 = p2 = 2 e
Then for 1 </ < m, we have
Aitn—m < pj <A
The ith largest eigenvalue of B is at most the ith largest eigenvalue

of A, and the jth smallest eigenvalue of B is at least the jth
smallest eigenvalue of A.



Applying Interlacing on Q"

» Let H be an induced subgraph of Q" on 2"~! + 1 vertices.
» Then )\1(H) > )\2n—1(Qn).
» The eigenvalues of Q" are

n

), (n—2)&), ... (=21, (=m)().



Applying Interlacing on Q"

» Let H be an induced subgraph of Q" on 2"~! + 1 vertices.
» Then )\1(H) > )\2n—1(Qn).

» The eigenvalues of Q" are

&) (=2, =2y, (=)D,

Depending on the parity of n, we get A(H) > A\i(H) >0 or
A(H) > M(H) > 1.



Signed Adjacency Matrix

Lemma

For every graph, and M is a symmetric signed adjacency matrix of
G with largest eigenvalue A1,

A1 < A(G).
The proof is exactly the same as before!

Mvil = [(A)il = > vil < AG) - Jvil.

jri



Signed Adjacency Matrix

Lemma

For every graph, and M is a symmetric signed adjacency matrix of
G with largest eigenvalue A1,

A1 < A(G).

The proof is exactly the same as before!

Mvil = [(A)il = > vil < AG) - Jvil.

jri

If we can find such an M, whose 2"~ 1th largest eigenvalue is \/n,
then we are done!



The matrix M

We can view the adjacency matrix of Q" as follows:

1[0 1 n [ Q" o
Q_[l o]’ Q_{/zn_l Q"—l]'

» There are two copies of Q"1 and the identity matrix denotes
the edges that connect the corresponding vertices.

» Huang considers the following matrix for obtaining the bound.



The matrix M

We can view the adjacency matrix of Q" as follows:

1[0 1 n [ Q" o
Q_[l o]’ Q_{/zn_l Q"—l]'

» There are two copies of Q"1 and the identity matrix denotes
the edges that connect the corresponding vertices.

» Huang considers the following matrix for obtaining the bound.

0 1 Mn_]_ I2n71 :|
My = . M, = :
! { ] [ bn1  —Ma_y



Eigenvalues of M,

M2 _ |: Mnf]_ I2n—1 :| |: Mnf]_ I2n—1 :|

n I2n—1 —Mn_]_ I2n—1 —Mn_]_
_ Mr2771 + I2n71 0 o
= |: 0 I\/]%_l + I2,,_1 = n/zn.

By induction, I\/I,2, =nl.
This means that all the eigenvalues of M, are +/n.

v

v

v

M, is a signed adjacency matrix of Q", hence trace(M,) = 0.
The eigenvalues are \/n and —+/n, each with multiplicty 2"~1.

v

In particular, the 2"~1-th largest eigenvalue is /n, completing
the proof!

v



Avoiding the Interlacing Theorem

» M, has eigenvalue \/n with multiplicity 271,
» Let B be the 2" x 2"~ matrix where each column is an
eigenvector with eigenvalue \/n. That is, M,,B = \/nB.

» Let B* be a 2"1 — 1 x 2"~ matrix consisting of the 2771 — 1
rows of B that correspond to vertices that don't belong to H.

» Ja 2" ! x 1 vector x # 0 such that B*x = 0.



Avoiding the Interlacing Theorem

» M, has eigenvalue \/n with multiplicity 271,
» Let B be the 2" x 2"~ matrix where each column is an
eigenvector with eigenvalue \/n. That is, M,,B = \/nB.

» Let B* be a 2"1 — 1 x 2"~ matrix consisting of the 2771 — 1
rows of B that correspond to vertices that don't belong to H.

» Ja 2" ! x 1 vector x # 0 such that B*x = 0.

» Then y = Bx is a 2" x 1 vector that is zero outside H.

» M,y = +/ny, since y is a linear combination of columns of B.
» Then A(H)y = \/ny since y is zero outside H.

» Therefore A(H) > A1 (H) > +/n.

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott
Aaronson'’s blog.



How was M, determined?

Theorem (Hadamard's Inequality)

For an m x m matrix M with row vectors v;,
m

| det(M)| < [ Jlvill-
i=1

Equality is achieved if and only if all the row vectors are orthogonal.



How was M, determined?

Theorem (Hadamard's Inequality)

For an m x m matrix M with row vectors v;,
m

| det(M)| < [ Jlvill-
i=1

Equality is achieved if and only if all the row vectors are orthogonal.

» Since M, is a signed adjacency matrix of Q", Hadamard's
Inequality implies | det(M,)| < (v/n)?".

» The 2"~ 1-th largest eigenvalue of M, is at least \/n. Since the
matrix is the adjacency matrix of a bipartite graph, the
eigenvalues are symmetric about 0. Thus | det(M,)| > (v/n)?".



How was M, determined?

Theorem (Hadamard's Inequality)

For an m x m matrix M with row vectors v;,
m

| det(M)| < [ Jlvill-
i=1

Equality is achieved if and only if all the row vectors are orthogonal.

» Since M, is a signed adjacency matrix of Q", Hadamard's
Inequality implies | det(M,)| < (v/n)?".

» The 2"~ 1-th largest eigenvalue of M, is at least \/n. Since the
matrix is the adjacency matrix of a bipartite graph, the
eigenvalues are symmetric about 0. Thus | det(M,)| > (v/n)?".

So we need that all rows are orthogonal: i.e., MJ M, = nl.



How was M, determined?
B K
We need M M, = nl. Let M, = [ K C ]
Here B and C are signed adjacency matrices of Q"1 and K is a
diagonal matrix with +1 entries.

w2 B2 + K? BK+KC]

B B2+1 BK+ KC
" | KB4+ CK C%2+K?

KB+ CK C%2+1

» B2=C?=(n—1)l. Sowe have B2+ | = C?>+ [ =nl.
» We want BK + KC =0, hence C = —KBK.
» If we let K =/, we get



Sensitivity of Boolean Functions

A boolean function f : {0,1}” — {0, 1} is an assignment of {0,1}
values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input
x is defined as the number of indices 7, such that f(x) # f(x{}).
The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit 7 flipped.



Sensitivity of Boolean Functions

A boolean function f : {0,1}” — {0, 1} is an assignment of {0,1}
values to the vertices of the boolean hypercube.
Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input
x is defined as the number of indices 7, such that f(x) # f(x{}).
The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit 7 flipped.

AND function over n bits.

v

v

OR function over n bits.
XOR function over n bits.
f(x) = x1.

v

v
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Sensitivity of Boolean Functions

A boolean function f : {0,1}” — {0, 1} is an assignment of {0,1}
values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input
x is defined as the number of indices 7, such that f(x) # f(x{}).
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v
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Sensitivity of Boolean Functions

A boolean function f : {0,1}” — {0, 1} is an assignment of {0,1}
values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input
x is defined as the number of indices 7, such that f(x) # f(x{}).
The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit 7 flipped.

» AND function over n bits. s(AND) = n
» OR function over n bits. s(OR) =n
» XOR function over n bits. s(XOR) =n
> f(x) =x.



Sensitivity of Boolean Functions

A boolean function f : {0,1}” — {0, 1} is an assignment of {0,1}
values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input
x is defined as the number of indices 7, such that f(x) # f(x{}).
The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit 7 flipped.

v

AND function over n bits. s(AND) = n
OR function over n bits. s(OR) =n
XOR function over n bits. s(XOR) =n
f(x) = x1. s(f)=1

v

v

v



Sensitivity of Boolean Functions

Sensitivity

Given a boolean function f : {0,1}" — {0,1}. The local sensitivity
s(f, x) on the input x is defined as the number of indices i, such
that f(x) # f(x!}). The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit i flipped.



Sensitivity of Boolean Functions

Sensitivity

Given a boolean function f : {0,1}" — {0,1}. The local sensitivity
s(f, x) on the input x is defined as the number of indices i, such
that f(x) # f(x!}). The sensitivity s(f) of f is max, s(f, x).

The vector x{} € {0,1}" is the same as x, with bit i flipped.

Block Sensitivity

Given a boolean function f : {0,1}"” — {0,1}. The local block
sensitivity bs(f, x) on the input x is defined as the maximum
number of disjoint blocks By, ..., Bk of [n], such that for each B;,
f(x) # f(xB). The block sensitivity bs(f) of f is max, bs(f, x).
The vector xB € {0,1}" is the same as x, with bits in B; flipped.



Block Sensitivity of Boolean Functions

Block Sensitivity

Given a boolean function f : {0,1}"” — {0,1}. The local block
sensitivity bs(f, x) on the input x is defined as the maximum
number of disjoint blocks By, ..., Bk of [n], such that for each B;,
f(x) # f(xB). The block sensitivity bs(f) of f is max, bs(f, x).

» For any non constant f, 1 < s(f) < bs(f) < n.

» This is because block sensitivity is a generalization of
sensitivity.

» Hence bs(AND) = bs(OR) = bs(XOR) = n



Block Sensitivity of Boolean Functions

Block Sensitivity

Given a boolean function f : {0,1}"” — {0,1}. The local block
sensitivity bs(f, x) on the input x is defined as the maximum
number of disjoint blocks By, ..., Bk of [n], such that for each B;,
f(x) # f(xB). The block sensitivity bs(f) of f is max, bs(f, x).

v

For any non constant f, 1 <s(f) < bs(f) < n.

This is because block sensitivity is a generalization of
sensitivity.
Hence bs(AND) = bs(OR) = bs(XOR) = n

v

v

v

Can we upper bound bs(f) in terms of s(f)?



Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

bs(f) < poly(s(f)).
In other words,

3 a constant ¢ such that bs(f) = O(s(f)°).

» We know s(f) < bs(f).



Relevance & History

» The study of sensitivity started from the works of Cook, Dwork
and Reischuk (1986).

» They showed the lower bound CREW(f) = Q(logs(f))

» CREW(f) is the minimum number of steps required to
compute f on a CREW PRAM — Consecutive Read Exclusive
Write Parallel RAM

» Later, Nisan (1989) showed CREW(f) = ©(log bs(f))

» Nisan (1989) and Nisan and Szegedy (1992) showed the
relations between many other parameters.



Relevance & History

Two complexity measures s; and s of boolean functions are
polynomially related if 3C;, C; > 0, such that for every boolean f:

s2(F) < s1(F) < so(F) 2.

Polynomially related parameters

Block sensitivity Certificate complexity
Degree (as a real polynomial)  Approximate degree
Randomized query complexity = Quantum query complexity
Decision tree complexity
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Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,
bs(f) < poly(s(f)).
In other words,

3 a constant ¢ such that bs(f) = O(s(f)°).



Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

bs(f) < poly(s(f)).
In other words,

3 a constant ¢ such that bs(f) = O(s(f)°).

» We will now see a function f where bs(f) = Q(s(f)?).



The Rubinstein Function

Define f : {0,1}" — {0,1} as

n

f(Xll,. .. ,X,m) = \/g(X,'l7 e ,X,'n),
i=1

where g(x1,...,xp) = 1iff x; = xj41 =1forsome1 <j<n-—1
and all other x, = 0.
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The Rubinstein Function

Define f : {0,1}" — {0,1} as

n

f(Xll,. .. ,X,m) = \/g(X,'l, e ,X,'n),
i=1

where g(x1,...,xp) = 1iff x; = xj41 =1forsome1 <j<n-—1
and all other x, = 0.

bs(f) > bs(f,0) = Q(n?).

0011 — 1
0000 — 0
0000 — 0
0000 — 0
I
1



The Rubinstein Function

Define f : {0,1}" — {0,1} as

n

f(Xll,. .. ,X,m) = \/g(X,'l, e ,X,'n),
i=1

where g(x1,...,xp) = 1iff x; = xj41 =1forsome1 <j<n-—1
and all other x, = 0.

bs(f) > bs(f,0) = Q(n?).

0000 — O
1100 — 1
0000 — O
0000 — O
+
1



Sensitivity of Rubinstein Function

We will see that s(f) = O(n).



Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

Case 1: f(x) =0.
Every row must output 0. In such a case, each row has at most two
sensitive coordinates, when the row looks like

0...010...0 or O0...111...0.
So s(f,x) < 2n.



Sensitivity of Rubinstein Function

We will see that s(f) = O(n).
Case 1: f(x) =0.
Every row must output 0. In such a case, each row has at most two
sensitive coordinates, when the row looks like
0...010...0 or O0...111...0.
So s(f,x) < 2n.
Case 2: f(x) = 1.

» If at least two rows output 1, s(f,x) = 0.

» If only one row outputs 1, s(f, x) < n.



Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

> bs(f) = O(s(£)4 f)) (Simon 1983)
» bs(f) < (e/v2r)e3F)\/s(F). (Kenyon, Kutin 2004)
> bs(f) < 25()=1s(f).  (Ambainis, Gao, Mao, Sun, Zuo 2013)
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Gaps between bs(f) and s(f):

> bs(f) = 1s(f)2 (Rubinstein 1995)
> bs(f) = 1s(f)2 + s(f). (Virza 2011)
> bs(f) = 2s(f)? — 3s(f). (Ambainis, Sun 2011)



Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

> bs(f) = O(s(£)4 f)) (Simon 1983)
» bs(f) < (e/v2r)e3F)\/s(F). (Kenyon, Kutin 2004)
> bs(f) < 25()=1s(f).  (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f) and s(f):

> bs(f) = 1s(f)2 (Rubinstein 1995)
> bs(f) = 1s(f)2 + s(f). (Virza 2011)
> bs(f) = 2s(f)? — 3s(f). (Ambainis, Sun 2011)

All upper bounds are exponential,
and lower bounds are quadratic.



The Gotsman-Linial Equivalence

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function h: N — R.

» For any induced subgraph of the n-dimensional boolean
hypercube Q", with |V/(H)| # 2"~1, we have

max{A(H), A(Q"\ H)} > h(n).

» For any boolean function f, we have s(f) > h(deg(f)).
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The Gotsman-Linial Equivalence

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function h: N — R.

» For any induced subgraph of the n-dimensional boolean
hypercube Q", with |V/(H)| # 2”1, we have

max{A(H), A(Q" \ H)} > h(n).

» For any boolean function f, we have s(f) > h(deg(f)).

» bs(f) < 2deg(f)?. (Nisan, Szegedy 1992)
» Hence if we show the above statement in red, this implies that

bs(f) < 2(h~*(s(f)))*.



Huang's Result

Theorem (Huang 2019)

Every (27! + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least \/n.



Huang's Result

Theorem (Huang 2019)

Every (27! + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least \/n.

With the Gotsman-Linial equivalence, we get:

Corollary
For every boolean function f, s(f) > +/deg(f). Tight!



Huang's Result

Theorem (Huang 2019)

Every (27! + 1)-vertex induced subgraph of Q" contains a vertex
of degree at least \/n.

With the Gotsman-Linial equivalence, we get:

Corollary

For every boolean function f, s(f) > J(F(f). Tight!
Using bs(f) < 2deg(f)?, we get:

Corollary

For every boolean function f, bs(f) < 2s(f)*, proving the
sensitivity conjecture!



The Gotsman-Linial Equivalence

Consider a monotone function h: N — R.

1. For any induced subgraph of the n-dimensional boolean
hypercube Q", with |V(H)| # 2", we have

max{A(H), A(Q" \ H)} > h(n).

2. For any boolean function f, we have s(f) > h(deg(f)).
3.
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2. For any boolean function f, we have s(f) > h(deg(f)).

3

» Gotsman, Linial showed that 1 and 2 are equivalent.
» We only need the direction that 1 = 2.



The Gotsman-Linial Equivalence

Consider a monotone function h: N — R.

1. For any induced subgraph of the n-dimensional boolean
hypercube Q", with |V(H)| # 2", we have

max{A(H), A(Q" \ H)} > h(n).

2. For any boolean function f, we have s(f) > h(deg(f)).
3. For any boolean function g with deg(g) = n, s(g) > h(n).

» Gotsman, Linial showed that 1 and 2 are equivalent.
» We only need the direction that 1 = 2.
» We show 1 =3 =2,

» 3 = 2 follows by letting g be a restriction of f to the support
of a max degree monomial.



The Gotsman-Linial Equivalence (1 = 3)

Consider a monotone function h: N — R.

1. For any induced subgraph of the n-dimensional boolean
hypercube @, with |V(H)| # 2", we have

max{A(H), A(Q™\ H)} > h(n).

3. For any boolean function g with deg(g) = n, s(g) > h(n).



The Gotsman-Linial Equivalence (1 = 3)

Consider a monotone function h: N — R.

1. For any induced subgraph of the n-dimensional boolean
hypercube @, with |V(H)| # 2", we have

max{A(H), A(Q™\ H)} > h(n).

3. For any boolean function g with deg(g) = n, s(g) > h(n).

> Suppose there exists g such that s(g) < h(n) and deg(g) = n.

» Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.

» Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}
» We have s(g) = max{A(H), A(Q" \ H)}.



The Gotsman-Linial Equivalence (1 = 3)

v

Suppose there exists g such that s(g) < h(n) and deg(g) = n.
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Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.
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Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}.
We have s(g) = max{A(H), A(Q" \ H)}.
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v

Suppose there exists g such that s(g) < h(n) and deg(g) = n.

v

Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.

v

Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}.
We have s(g) = max{A(H), A(Q" \ H)}.

>

> g(x) = x3.
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v

Suppose there exists g such that s(g) < h(n) and deg(g) = n.

v

Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.

v

Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}.
We have s(g) = max{A(H), A(Q" \ H)}.

>

> g(x) = x1 + x3.
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v

Suppose there exists g such that s(g) < h(n) and deg(g) = n.

v

Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.

v

Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}.
We have s(g) = max{A(H), A(Q" \ H)}.

>

> g(x) =x1+ x2 + x3.




The Gotsman-Linial Equivalence (1 = 3)

v

Suppose there exists g such that s(g) < h(n) and deg(g) = n.

v

Consider the function g’(x) where we start with g(x) and flip
the function value for all odd parity x.

v

Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}.
We have s(g) = max{A(H), A(Q" \ H)}.

>

> g(x) = X1 + X2 + X3.
» Flipping the value of odd
parity x.




The Gotsman-Linial Equivalence (1 = 3)

Note: For this slide alone, we consider g : {0,1}" — {41, —1}.

» Suppose there exists g such that s(g) < h(n) and deg(g) = n.
» Consider the function g'(x) = g(x)p(x), where
p(x) : {0,1}" — {41, —1} indicates the parity of x.
» Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}
» We have max{A(H), A(Q"\ H)} = s(g) < h(n).



The Gotsman-Linial Equivalence (1 = 3)

Note: For this slide alone, we consider g : {0,1}" — {41, —1}.

» Suppose there exists g such that s(g) < h(n) and deg(g) = n.
» Consider the function g'(x) = g(x)p(x), where
p(x) : {0,1}" — {41, —1} indicates the parity of x.
» Consider the induced subgraph H of Q" with vertex set
V(H) = {x: g'(x) = 1}
» We have max{A(H), A(Q"\ H)} = s(g) < h(n).

> [V(H)| = [V(Q"\ H)| = Elg(x)p(x)] = (g, p) = &([n])-
» Since deg(g) = n, we have g([n]) # 0.
» Hence |V(H)| # |V(Q" \ H)|. Contradiction.



How did he come up with this proof? In Huang's words

Nov 2012: | was introduced to this problem by Michael Saks when
| was a postdoc at the IAS, and got immediately attracted by the
induced subgraph reformulation. And of course, in the next few
weeks, | exhausted all the combinatorial techniques that | am aware
of, yet | could not even improve the constant factor from the
Chung-Fiiredi-Graham-Seymour paper.

Around mid-year 2013: | started to believe that the maximum
eigenvalue is a better parameter to look at, actually it is
polynomially related to the max degree, i.e

A(G) < A\(G) < A(G).
2013-2018: | revisited this conjecture every time when | learn a
new tool, without any success though. But at least thinking about
it helps me quickly fall asleep many nights.

Excerpts from Huang's comment in Scott Aaronson's blog:
https://www.scottaaronson.com/blog/?p=42294#tcomment-1813116



How did he come up with this proof? In Huang's words

Late 2018: After working on a project and several semesters of
teaching a graduate combinatorics course, | started to have a better
understanding of eigenvalue interlacing, and believe that it might
help this problem.

June 2019: In a Madrid hotel when | was painfully writing a
proposal and trying to make the approaches sound more
convincing, | finally realized that the maximum eigenvalue of any
pseudo-adjacency matrix of a graph provides lower bound on the
maximum degree. The rest is just a bit of trial-and-error and linear
algebra.

Excerpts from Huang's comment in Scott Aaronson’s blog:
https://www.scottaaronson.com/blog/?p=42294tcomment-1813116



Open Questions

» We saw that bs(f) = O(s(f)*). We saw an f where
bs(f) = Q(s(f)?). It will be interesting to find the best bound
possible.

» Let ¢ > 1/2. What is the smallest t such that every t-vertex
induced subgraph of Q" has maximum degree at least n°?

» For a given graph G, can we get similar bounds on the degrees
of (a(G) + 1)-vertex induced subgraphs of G?



Ryan O'Donnell
@BooleanAnalysis
Hao Huang@Emory:

Ex.1: dedge-signing of n-cube with 2*{n-1} eigs each of
+/-sqrt(n)

Interlacing=>Any induced subgraph with >2*{n-1} vics
has max eig >= sqrt(n)

Ex.2: In subgraph, max eig <= max valency, even with
signs

Hence [GL92] the Sensitivity Conj, s(f) >= sqgrt(deg(f))
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