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I The boolean hypercube Qn

has vertex set {0, 1}n.
I Two vertices are adjacent iff

they differ in exactly one
coordinate.

I The 22 red points in Q3

form an independent set.
I In Qn, we can select 2n−1

points that form an
independent set.

I We are interested in the max
degree of the graph induced
by 2n−1 + 1 selected points.
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2n−1 + 1 points of Q3

I The red vertices give an induced path on 5 vertices.
I We can even form an induced cycle on 6 vertices.
I In any combination of 5 vertices, there exists a vertex of

degree ≥ 2.
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2n−1 + 1 points of Q4

I The nine red vertices give an induced graph with maximum
degree 2.

I In any combination of 9 vertices, there exists a vertex of
degree ≥ 2.
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Question

What is the smallest possible value of the maximum degree of H,
where H is an induced subgraph of Qn, with |V (H)| = 2n−1 + 1?

In other words
We want to determine the following:

min
{H:|V (H)|=2n−1+1}

max
{v∈V (H)}

degHv .



Question

What is min
{H:|V (H)|=2n−1+1}

max
{v∈V (H)}

degHv? (?)

Theorem (Chung, Füredi, Graham, Seymour 1988)

I Every (2n−1 + 1)-vertex induced subgraph of Qn has maximum
degree at least (1/2− o(1)) log n. Ans of (?) = Ω(log n).

I Qn has a (2n−1 + 1)-vertex induced subgraph of maximum
degree d

√
ne. Ans of (?) ≤

√
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Upper Bound: Let [n] = F1 ∪ F2 ∪ . . .∪ F√n, with each |Fi | =
√
n.

Let X be defined as the following set of points of {0, 1}n.
{even sets that contain some Fi}∪{odd sets that don’t contain any Fi}.
It can be verified that |X | = 2n−1 ± 1 while ∆(X ) = ∆(XC ) =

√
n.
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What is min
{H:|V (H)|=2n−1+1}

max
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Theorem (Huang 2019)

Every (2n−1 + 1)-vertex induced subgraph of Qn contains a vertex
of degree at least

√
n. Ans of (?) =

√
n.



Proof of Huang’s Result

Theorem (Huang 2019)

Every (2n−1 + 1)-vertex induced subgraph of Qn contains a vertex
of degree at least

√
n.

Lemma
Let G be a graph. Let λ1 be the largest eigenvalue of A, the
adjacency matrix of G . Then

λ1 ≤ ∆(G ).

Proof: Let v be an eigenvector corresponding to λ1. Let vi be the
entry of v with the largest absolute value. Then

|λ1vi | = |(Av)i | = |
∑
j∼i

vj | ≤ ∆(G ) · |vi |.
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EIgenvalue Interlacing

Cauchy’s Interlacing Theorem

Let A be a symmetric matrix of size n, and B is a principal
submatrix of A of size m ≤ n. Suppose the eigenvalues of A are

λ1 ≥ λ2 ≥ . . . ≥ λn,

and the eigenvalues of B are

µ1 ≥ µ2 ≥ . . . ≥ µm.

Then for 1 ≤ i ≤ m, we have

λi+n−m ≤ µi ≤ λi .

The ith largest eigenvalue of B is at most the ith largest eigenvalue
of A, and the jth smallest eigenvalue of B is at least the jth
smallest eigenvalue of A.



Applying Interlacing on Qn

I Let H be an induced subgraph of Qn on 2n−1 + 1 vertices.
I Then λ1(H) ≥ λ2n−1(Qn).
I The eigenvalues of Qn are

n(n0), (n − 2)(n1), . . . , (n − 2i)(ni), . . . , (−n)(nn).

Depending on the parity of n, we get ∆(H) ≥ λ1(H) ≥ 0 or
∆(H) ≥ λ1(H) ≥ 1.
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Signed Adjacency Matrix

Lemma
For every graph, and M is a symmetric signed adjacency matrix of
G with largest eigenvalue λ1,

λ1 ≤ ∆(G ).

The proof is exactly the same as before!

|λ1vi | = |(Av)i | = |
∑
j∼i

vj | ≤ ∆(G ) · |vi |.

If we can find such an M, whose 2n−1th largest eigenvalue is
√
n,

then we are done!
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The matrix M

We can view the adjacency matrix of Qn as follows:

Q1 =

[
0 1
1 0

]
, Qn =

[
Qn−1 I2n−1

I2n−1 Qn−1

]
.

I There are two copies of Qn−1 and the identity matrix denotes
the edges that connect the corresponding vertices.

I Huang considers the following matrix for obtaining the bound.

M1 =

[
0 1
1 0

]
, Mn =

[
Mn−1 I2n−1

I2n−1 −Mn−1

]
.
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Eigenvalues of Mn

M2
n =

[
Mn−1 I2n−1

I2n−1 −Mn−1

] [
Mn−1 I2n−1

I2n−1 −Mn−1

]
=

[
M2

n−1 + I2n−1 0
0 M2

n−1 + I2n−1

]
= nI2n .

I By induction, M2
n = nI .

I This means that all the eigenvalues of Mn are ±
√
n.

I Mn is a signed adjacency matrix of Qn, hence trace(Mn) = 0.
I The eigenvalues are

√
n and −

√
n, each with multiplicty 2n−1.

I In particular, the 2n−1-th largest eigenvalue is
√
n, completing

the proof!



Avoiding the Interlacing Theorem

I Mn has eigenvalue
√
n with multiplicity 2n−1.

I Let B be the 2n × 2n−1 matrix where each column is an
eigenvector with eigenvalue

√
n. That is, MnB =

√
nB.

I Let B∗ be a 2n−1 − 1× 2n−1 matrix consisting of the 2n−1 − 1
rows of B that correspond to vertices that don’t belong to H.

I ∃ a 2n−1 × 1 vector x 6= 0 such that B∗x = 0.

I Then y = Bx is a 2n × 1 vector that is zero outside H.
I Mny =

√
ny , since y is a linear combination of columns of B .

I Then A(H)y =
√
ny since y is zero outside H.

I Therefore ∆(H) ≥ λ1(H) ≥
√
n.

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott
Aaronson’s blog.
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How was Mn determined?

Theorem (Hadamard’s Inequality)

For an m ×m matrix M with row vectors vi ,

| det(M)| ≤
m∏
i=1

‖vi‖.

Equality is achieved if and only if all the row vectors are orthogonal.

I Since Mn is a signed adjacency matrix of Qn, Hadamard’s
Inequality implies | det(Mn)| ≤ (

√
n)2n .

I The 2n−1-th largest eigenvalue of Mn is at least
√
n. Since the

matrix is the adjacency matrix of a bipartite graph, the
eigenvalues are symmetric about 0. Thus | det(Mn)| ≥ (

√
n)2n .

So we need that all rows are orthogonal: i.e., MT
n Mn = nI .
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How was Mn determined?

We need MT
n Mn = nI . Let Mn =

[
B K
K C

]
.

Here B and C are signed adjacency matrices of Qn−1 and K is a
diagonal matrix with ±1 entries.

M2
n =

[
B2 + K 2 BK + KC
KB + CK C 2 + K 2

]
=

[
B2 + I BK + KC

KB + CK C 2 + I

]
.

I B2 = C 2 = (n − 1)I . So we have B2 + I = C 2 + I = nI .
I We want BK + KC = 0, hence C = −KBK .
I If we let K = I , we get

Mn =

[
Mn−1 I
I −Mn−1

]
.



Sensitivity of Boolean Functions

A boolean function f : {0, 1}n → {0, 1} is an assignment of {0, 1}
values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f , the local sensitivity s(f , x) on the input
x is defined as the number of indices i , such that f (x) 6= f (x{i}).
The sensitivity s(f ) of f is maxx s(f , x).
The vector x{i} ∈ {0, 1}n is the same as x , with bit i flipped.

I AND function over n bits.
I OR function over n bits.
I XOR function over n bits.
I f (x) = x1.
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Sensitivity of Boolean Functions

Sensitivity

Given a boolean function f : {0, 1}n → {0, 1}. The local sensitivity
s(f , x) on the input x is defined as the number of indices i , such
that f (x) 6= f (x{i}). The sensitivity s(f ) of f is maxx s(f , x).
The vector x{i} ∈ {0, 1}n is the same as x , with bit i flipped.

Block Sensitivity

Given a boolean function f : {0, 1}n → {0, 1}. The local block
sensitivity bs(f , x) on the input x is defined as the maximum
number of disjoint blocks B1, . . . ,Bk of [n], such that for each Bi ,
f (x) 6= f (xBi ). The block sensitivity bs(f ) of f is maxx bs(f , x).
The vector xBi ∈ {0, 1}n is the same as x , with bits in Bi flipped.
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Block Sensitivity

Given a boolean function f : {0, 1}n → {0, 1}. The local block
sensitivity bs(f , x) on the input x is defined as the maximum
number of disjoint blocks B1, . . . ,Bk of [n], such that for each Bi ,
f (x) 6= f (xBi ). The block sensitivity bs(f ) of f is maxx bs(f , x).

I For any non constant f , 1 ≤ s(f ) ≤ bs(f ) ≤ n.
I This is because block sensitivity is a generalization of

sensitivity.
I Hence bs(AND) = bs(OR) = bs(XOR) = n

I Can we upper bound bs(f ) in terms of s(f )?
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Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f ,

bs(f ) ≤ poly(s(f )).

In other words,

∃ a constant c such that bs(f ) = O(s(f )c).

I We know s(f ) ≤ bs(f ).



Relevance & History

I The study of sensitivity started from the works of Cook, Dwork
and Reischuk (1986).

I They showed the lower bound CREW(f ) = Ω(log s(f ))

I CREW(f ) is the minimum number of steps required to
compute f on a CREW PRAM – Consecutive Read Exclusive
Write Parallel RAM

I Later, Nisan (1989) showed CREW(f ) = Θ(log bs(f ))

I Nisan (1989) and Nisan and Szegedy (1992) showed the
relations between many other parameters.



Relevance & History

Two complexity measures s1 and s2 of boolean functions are
polynomially related if ∃C1,C2 > 0, such that for every boolean f :

s2(f )C1 ≤ s1(f ) ≤ s2(f )C2 .

Polynomially related parameters
Block sensitivity Certificate complexity
Degree (as a real polynomial) Approximate degree
Randomized query complexity Quantum query complexity
Decision tree complexity

Sensitivity Conjecture
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The Rubinstein Function

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g(xi1, . . . , xin),

where g(x1, . . . , xn) = 1 iff xj = xj+1 = 1 for some 1 ≤ j ≤ n − 1
and all other xk = 0.

bs(f ) ≥ bs(f ,~0) = Ω(n2).

0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0

↓
0



The Rubinstein Function

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g(xi1, . . . , xin),

where g(x1, . . . , xn) = 1 iff xj = xj+1 = 1 for some 1 ≤ j ≤ n − 1
and all other xk = 0.

bs(f ) ≥ bs(f ,~0) = Ω(n2).

0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0

↓
0



The Rubinstein Function

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g(xi1, . . . , xin),

where g(x1, . . . , xn) = 1 iff xj = xj+1 = 1 for some 1 ≤ j ≤ n − 1
and all other xk = 0.

bs(f ) ≥ bs(f ,~0) = Ω(n2).

1 1 0 0 −→ 1
0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0

↓
1



The Rubinstein Function

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g(xi1, . . . , xin),

where g(x1, . . . , xn) = 1 iff xj = xj+1 = 1 for some 1 ≤ j ≤ n − 1
and all other xk = 0.

bs(f ) ≥ bs(f ,~0) = Ω(n2).

0 0 1 1 −→ 1
0 0 0 0 −→ 0
0 0 0 0 −→ 0
0 0 0 0 −→ 0

↓
1



The Rubinstein Function

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g(xi1, . . . , xin),

where g(x1, . . . , xn) = 1 iff xj = xj+1 = 1 for some 1 ≤ j ≤ n − 1
and all other xk = 0.

bs(f ) ≥ bs(f ,~0) = Ω(n2).

0 0 0 0 −→ 0
1 1 0 0 −→ 1
0 0 0 0 −→ 0
0 0 0 0 −→ 0

↓
1



Sensitivity of Rubinstein Function

We will see that s(f ) = O(n).

Case 1: f (x) = 0.
Every row must output 0. In such a case, each row has at most two
sensitive coordinates, when the row looks like

0 . . . 010 . . . 0 or 0 . . . 111 . . . 0.

So s(f , x) ≤ 2n.

Case 2: f (x) = 1.

I If at least two rows output 1, s(f , x) = 0.
I If only one row outputs 1, s(f , x) ≤ n.
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Case 2: f (x) = 1.

I If at least two rows output 1, s(f , x) = 0.
I If only one row outputs 1, s(f , x) ≤ n.
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Back to sensitivity and block sensitivity

Upper bounds for bs(f ) in terms of s(f ):

I bs(f ) = O(s(f )4s(f )). (Simon 1983)
I bs(f ) ≤ (e/

√
2π)es(f )

√
s(f ). (Kenyon, Kutin 2004)

I bs(f ) ≤ 2s(f )−1s(f ). (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f ) and s(f ):

I bs(f ) = 1
2s(f )2. (Rubinstein 1995)

I bs(f ) = 1
2s(f )2 + s(f ). (Virza 2011)

I bs(f ) = 2
3s(f )2 − 1

2s(f ). (Ambainis, Sun 2011)

All upper bounds are exponential,
and lower bounds are quadratic.
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The Gotsman-Linial Equivalence

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function h : N→ R.

I For any induced subgraph of the n-dimensional boolean
hypercube Qn, with |V (H)| 6= 2n−1, we have

max{∆(H),∆(Qn \ H)} ≥ h(n).

I For any boolean function f , we have s(f ) ≥ h(deg(f )).

I bs(f ) ≤ 2 deg(f )2. (Nisan, Szegedy 1992)
I Hence if we show the above statement in red, this implies that

bs(f ) ≤ 2(h−1(s(f )))2.
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Huang’s Result

Theorem (Huang 2019)

Every (2n−1 + 1)-vertex induced subgraph of Qn contains a vertex
of degree at least

√
n.

With the Gotsman-Linial equivalence, we get:

Corollary

For every boolean function f , s(f ) ≥
√

deg(f ). Tight!

Using bs(f ) ≤ 2 deg(f )2, we get:

Corollary

For every boolean function f , bs(f ) ≤ 2s(f )4, proving the
sensitivity conjecture!
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Consider a monotone function h : N→ R.
1. For any induced subgraph of the n-dimensional boolean

hypercube Qn, with |V (H)| 6= 2n−1, we have

max{∆(H),∆(Qn \ H)} ≥ h(n).

2. For any boolean function f , we have s(f ) ≥ h(deg(f )).
3. For any boolean function g with deg(g) = n, s(g) ≥ h(n).

I Gotsman, Linial showed that 1 and 2 are equivalent.
I We only need the direction that 1⇒ 2.
I We show 1⇒ 3⇒ 2.
I 3⇒ 2 follows by letting g be a restriction of f to the support

of a max degree monomial.
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The Gotsman-Linial Equivalence (1⇒ 3)

Consider a monotone function h : N→ R.
1. For any induced subgraph of the n-dimensional boolean

hypercube Qn, with |V (H)| 6= 2n−1, we have

max{∆(H),∆(Qn \ H)} ≥ h(n).

3. For any boolean function g with deg(g) = n, s(g) ≥ h(n).

I Suppose there exists g such that s(g) < h(n) and deg(g) = n.
I Consider the function g ′(x) where we start with g(x) and flip

the function value for all odd parity x .
I Consider the induced subgraph H of Qn with vertex set

V (H) = {x : g ′(x) = 1}.
I We have s(g) = max{∆(H),∆(Qn \ H)}.
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The Gotsman-Linial Equivalence (1⇒ 3)

Note: For this slide alone, we consider g : {0, 1}n → {+1,−1}.
I Suppose there exists g such that s(g) < h(n) and deg(g) = n.
I Consider the function g ′(x) = g(x)p(x), where

p(x) : {0, 1}n → {+1,−1} indicates the parity of x .
I Consider the induced subgraph H of Qn with vertex set

V (H) = {x : g ′(x) = 1}.
I We have max{∆(H),∆(Qn \ H)} = s(g) < h(n).

I |V (H)| − |V (Qn \ H)| = E[g(x)p(x)] = 〈g , p〉 = ĝ([n]).

I Since deg(g) = n, we have ĝ([n]) 6= 0.
I Hence |V (H)| 6= |V (Qn \ H)|. Contradiction.
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How did he come up with this proof? In Huang’s words

Nov 2012: I was introduced to this problem by Michael Saks when
I was a postdoc at the IAS, and got immediately attracted by the
induced subgraph reformulation. And of course, in the next few
weeks, I exhausted all the combinatorial techniques that I am aware
of, yet I could not even improve the constant factor from the
Chung-Füredi-Graham-Seymour paper.

Around mid-year 2013: I started to believe that the maximum
eigenvalue is a better parameter to look at, actually it is
polynomially related to the max degree, i.e√

∆(G ) ≤ λ(G ) ≤ ∆(G ).

2013-2018: I revisited this conjecture every time when I learn a
new tool, without any success though. But at least thinking about
it helps me quickly fall asleep many nights.

Excerpts from Huang’s comment in Scott Aaronson’s blog:
https://www.scottaaronson.com/blog/?p=4229#comment-1813116



How did he come up with this proof? In Huang’s words

Late 2018: After working on a project and several semesters of
teaching a graduate combinatorics course, I started to have a better
understanding of eigenvalue interlacing, and believe that it might
help this problem.

June 2019: In a Madrid hotel when I was painfully writing a
proposal and trying to make the approaches sound more
convincing, I finally realized that the maximum eigenvalue of any
pseudo-adjacency matrix of a graph provides lower bound on the
maximum degree. The rest is just a bit of trial-and-error and linear
algebra.

Excerpts from Huang’s comment in Scott Aaronson’s blog:
https://www.scottaaronson.com/blog/?p=4229#comment-1813116



Open Questions

I We saw that bs(f ) = O(s(f )4). We saw an f where
bs(f ) = Ω(s(f )2). It will be interesting to find the best bound
possible.

I Let c > 1/2. What is the smallest t such that every t-vertex
induced subgraph of Qn has maximum degree at least nc?

I For a given graph G , can we get similar bounds on the degrees
of (α(G ) + 1)-vertex induced subgraphs of G?



Thank You


